Deformation quantization modules I. Finiteness and duality

نویسنده

  • Pierre Schapira
چکیده

Consider a ring K, a topological space X and a sheaf A on X of K[[~]]-algebras. Assuming A ~-adically complete and without ~torsion, we first show how to deduce a coherency theorem for complexes of A -modules from the corresponding property for complexes of A /~A -modules. We apply this result to prove that, under a natural properness condition, the convolution of two coherent kernels over deformation quantization algebroids on complex Poisson manifolds is coherent. We also construct the dualizing complexes for such algebroids and show that the convolution of kernels commutes with duality. Mathematics Subject Classification: 53D55, 46L65, 32C38

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FINITENESS PROPERTIES OF LOCALE COHOMOLOGY MODULES FOR (I;J)- MINIMAX MODULES

ABSTRACT. Let R be a commutative noetherian ring, I and J are two ideals of R. Inthis paper we introduce the concept of (I;J)- minimax R- module, and it is shown thatif M is an (I;J)- minimax R- module and t a non-negative integer such that HiI;J(M) is(I;J)- minimax for all i

متن کامل

Finiteness and duality

Consider a ring K, a topological space X and a sheaf A on X of K[[~]]-algebras. Assuming that A is ~-complete and without ~torsion, we first show how to deduce a coherency theorem for complexes of A -modules from a corresponding property for complexes of A /~A -modules. We apply this result to prove that, under a natural properness condition, the convolution of two coherent kernels over deforma...

متن کامل

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...

متن کامل

Finiteness of certain local cohomology modules

Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...

متن کامل

Constructibility and duality for simple holonomic modules on complex symplectic manifolds

Consider a complex symplectic manifold X and the algebroid stack WX of deformation-quantization. For two regular holonomic WXmodules Li (i = 0, 1) supported by smooth Lagrangian submanifolds, we prove that the complex RHom WX (L1,L0) is perverse over the field Wpt and dual to the complex RHomWX(L0,L1).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009